If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-14x-4=0
a = 10; b = -14; c = -4;
Δ = b2-4ac
Δ = -142-4·10·(-4)
Δ = 356
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{356}=\sqrt{4*89}=\sqrt{4}*\sqrt{89}=2\sqrt{89}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{89}}{2*10}=\frac{14-2\sqrt{89}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{89}}{2*10}=\frac{14+2\sqrt{89}}{20} $
| 2((x+9)=3(x-5) | | 3y(4-5)=7 | | (x/3)+8=4x−12+(x/3) | | x3+8=4x−12+x3 | | x/5+10=12 | | 6(-2-1)=(13g+2) | | -12-24=y | | 0.9^xx-1.1x=-66.6667 | | n-2n+5=1 | | 6n-66=12+8n-12 | | 1=2+n-2n | | 15x=x/2(15×0.9^1+15×0.9^x)+500 | | n-2n-4=-3 | | (-1.1+0.9^x)x=-66.6667 | | 16-2x=17-3x | | 1/2x+7=22 | | (3x-18)/2=3 | | 3y-14=-23 | | 5^7x=285 | | 13c-15c=-8 | | 0,5x-2=0,3x | | 3n=5n+2 | | 4(x+10)=3(9x-5)+20 | | 17−16r−1=4 | | 5n-14=2n | | 17r−16r−1=4 | | -18t+11t=7 | | 2(w)(w+7)=78 | | 6+7(1+6r)=13-2r | | -3(-6x-3)=99 | | 86=-7r+2(-4-2) | | -8b=-7b+7 |